明霞山资源网 Design By www.htccd.com

先前说了树的基本操作,我们采用的是二叉链表来保存树形结构,当然二叉有二叉的困扰之处,比如我想找到当前结点的“前驱”和“后继”,那么我们就必须要遍历一下树,然后才能定位到该“节点”的“前驱”和“后继”,每次定位都是O(n),这不是我们想看到的,那么有什么办法来解决呢?

   (1) 在节点域中增加二个指针域,分别保存“前驱”和“后继”,那么就是四叉链表了,哈哈,还是有点浪费空间啊。

   (2) 看下面的这个二叉树,我们知道每个结点有2个指针域,4个节点就有8个指针域,其实真正保存节点的指针

            仅有3个,还有5个是空闲的,那么为什么我们不用那些空闲的指针域呢,达到资源的合理充分的利用。

算法系列15天速成 第十二天 树操作【中】

一: 线索二叉树

1  概念

      刚才所说的在空闲的指针域里面存放“前驱”和“后继”就是所谓的线索。

        <1>  左线索:   在空闲的左指针域中存放该“结点”的“前驱”被认为是左线索。

        <2>  右线索:   在空闲的右指针域中存放该“结点“的”后继“被认为是右线索。

      当“二叉链表”被套上这种线索,就被认为是线索链表,当“二叉树”被套上这种线索就被认为是线索二叉树,当然线索根据

二叉树的遍历形式不同被分为“先序线索”,“中序线索”,“后序线索”。

2  结构图

      说了这么多,我们还是上图说话,就拿下面的二叉树,我们构建一个中序线索二叉树,需要多动动脑子哟。

     <1> 首先要找到“中序遍历”中的首结点D,因为“D结点”是首节点,所以不存在“前驱”,左指针自然是空,

            ”D节点”的右指针存放的是“后继”,那么根据“中序遍历”的规则应该是B,所以D的右指针存放着B节点。

     <2>  接着就是“B节点”,他的左指针不为空,所以就不管了,但是他的“右指针”空闲,根据规则“B结点“的右

    指针存放的是"A结点“。

     <3>  然后就是“A节点”,他已经被塞的满满的,所以就没有“线索”可言了。

     <4>  最后就是“C节点”,根据规则,他的“左指针”存放着就是“A节点“,”C节点“是最后一个节点,右指针自然就是空的,你懂的。

算法系列15天速成 第十二天 树操作【中】

3 基本操作   

   常用的操作一般有“创建线索二叉树”,”查找后继节点“,”查找前驱节点“,”遍历线索二叉树“,下面的操作我们就以”中序遍历“来创建中序线索二叉树。

<1>  线索二叉树结构

          从“结构图”中可以看到,现在结点的指针域中要么是”子节点(SubTree)“或者是”线索(Thread)“,此时就要设立标志位来表示指针域存放的是哪一种。

复制代码 代码如下:
#region 节点标识(用于判断孩子是节点还是线索)
    /// <summary>
/// 节点标识(用于判断孩子是节点还是线索)
/// </summary>
    public enum NodeFlag
    {
        SubTree = 1,
        Thread = 2
    }
    #endregion

    #region 线索二叉树的结构
    /// <summary>
/// 线索二叉树的结构
/// </summary>
/// <typeparam name="T"></typeparam>
    public class ThreadTree<T>
    {
        public T data;
        public ThreadTree<T> left;
        public ThreadTree<T> right;
        public NodeFlag leftFlag;
        public NodeFlag rightFlag;
    }
    #endregion

<2>  创建线索二叉树

        刚才也说了如何构建中序线索二叉树,在代码实现中,我们需要定义一个节点来保存当前节点的前驱,我练习的时候迫不得已,只能使用两个

    ref来实现地址操作,达到一个Tree能够让两个变量来操作。

复制代码 代码如下:
#region 中序遍历构建线索二叉树
        /// <summary>
/// 中序遍历构建线索二叉树
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
        public void BinTreeThreadingCreate_LDR<T>(ref ThreadTree<T> tree, ref ThreadTree<T> prevNode)
        {
            if (tree == null)
                return;

            //先左子树遍历,寻找起始点
            BinTreeThreadingCreate_LDR(ref tree.left, ref prevNode);

            //如果left为空,则说明该节点可以放“线索”
            tree.leftFlag = (tree.left == null) ? NodeFlag.Thread : NodeFlag.SubTree;

            //如果right为空,则说明该节点可以放“线索”
            tree.rightFlag = (tree.right == null) ? NodeFlag.Thread : NodeFlag.SubTree;

            if (prevNode != null)
            {
                if (tree.leftFlag == NodeFlag.Thread)
                    tree.left = prevNode;
                if (prevNode.rightFlag == NodeFlag.Thread)
                    prevNode.right = tree;
            }

            //保存前驱节点
            prevNode = tree;

            BinTreeThreadingCreate_LDR(ref tree.right, ref prevNode);
        }
        #endregion

<3> 查找后继结点

         现在大家都知道,后继结点都是保存在“结点“的右指针域中,那么就存在”两种情况“。

            《1》 拿“B节点“来说,他没有右孩子,则肯定存放着线索(Thread),所以我们直接O(1)的返回他的线索即可。

            《2》 拿“A节点”来说,他有右孩子,即右指针域存放的是SubTree,悲哀啊,如何才能得到“A节点“的后继呢?其实也很简单,

根据”中序“的定义,”A节点“的后继必定是”A节点“的右子树往左链找的第一个没有左孩子的节点(只可意会,不可言传,嘻嘻)。

复制代码 代码如下:
#region 查找指定节点的后继
        /// <summary>
/// 查找指定节点的后继
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
        public ThreadTree<T> BinTreeThreadNext_LDR<T>(ThreadTree<T> tree)
        {
            if (tree == null)
                return null;

            //如果查找节点的标志域中是Thread,则直接获取
            if (tree.rightFlag == NodeFlag.Thread)
                return tree.right;
            else
            {
                //根据中序遍历的规则是寻找右子树中中序遍历的第一个节点
                var rightNode = tree.right;

                //如果该节点是subTree就需要循环遍历
                while (rightNode.leftFlag == NodeFlag.SubTree)
                {
                    rightNode = rightNode.left;
                }
                return rightNode;
            }
        }
        #endregion

<4> 查找前驱节点
       

        这个跟(3)的操作很类似,同样也具有两个情况。

          《1》  拿“C结点”来说,他没有“左子树”,则说明“C节点”的左指针为Thread,此时,我们只要返回左指针域即可得到前驱结点。

          《2》  拿"A节点“来说,他有”左子树“,则说明”A节点“的左指针为SubTree,那么怎么找的到”A节点“的前驱呢?同样啊,根据

                   ”中序遍历“的性质,我们可以得知在”A节点“的左子树中往”右链“中找到第一个没有”右孩子“的节点。

复制代码 代码如下:
#region 查找指定节点的前驱
        /// <summary>
/// 查找指定节点的前驱
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
/// <returns></returns>
        public ThreadTree<T> BinTreeThreadPrev_LDR<T>(ThreadTree<T> tree)
        {
            if (tree == null)
                return null;

            //如果标志域中存放的是线索,那么可以直接找出来
            if (tree.leftFlag == NodeFlag.Thread)
                return tree.left;
            else
            {
                //根据”中序“的规则可知,如果不为Thread,则要找出左子树的最后节点
//也就是左子树中最后输出的元素
                var leftNode = tree.left;

                while (leftNode.rightFlag == NodeFlag.SubTree)
                    leftNode = leftNode.right;

                return leftNode;
            }
        }
        #endregion

<5> 遍历线索二叉树

          因为我们构建线索的时候采用的是“中序”,那么我们遍历同样采用“中序”,大家是否看到了“线索”的好处,此时我们找某个节点的时间复杂度变为了

        O(1) ~0(n)的时间段,比不是线索的时候查找“前驱"和“后继”效率要高很多。

复制代码 代码如下:
#region 遍历线索二叉树
        /// <summary>
/// 遍历线索二叉树
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
        public void BinTreeThread_LDR<T>(ThreadTree<T> tree)
        {
            if (tree == null)
                return;

            while (tree.leftFlag == NodeFlag.SubTree)
                tree = tree.left;

            do
            {
                Console.Write(tree.data + "\t");

                tree = BinTreeThreadNext_LDR(tree);

            } while (tree != null);

        }
        #endregion

最后上一下总的运行代码

复制代码 代码如下:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ThreadChainTree
{
    class Program
    {
        static void Main(string[] args)
        {
            ThreadTreeManager manager = new ThreadTreeManager();

            //生成根节点
            ThreadTree<string> tree = CreateRoot();

            //生成节点
            AddNode(tree);

            ThreadTree<string> prevNode = null;

            //构建线索二叉树
            manager.BinTreeThreadingCreate_LDR(ref tree, ref prevNode);

            Console.WriteLine("\n线索二叉树的遍历结果为:\n");
            //中序遍历线索二叉树
            manager.BinTreeThread_LDR(tree);
        }

        #region 生成根节点
        /// <summary>
/// 生成根节点
/// </summary>
/// <returns></returns>
        static ThreadTree<string> CreateRoot()
        {
            ThreadTree<string> tree = new ThreadTree<string>();

            Console.WriteLine("请输入根节点,方便我们生成树\n");

            tree.data = Console.ReadLine();

            Console.WriteLine("根节点生成已经生成\n");

            return tree;
        }
        #endregion

        #region 插入节点操作
        /// <summary>
/// 插入节点操作
/// </summary>
/// <param name="tree"></param>
        static ThreadTree<string> AddNode(ThreadTree<string> tree)
        {
            ThreadTreeManager mananger = new ThreadTreeManager();

            while (true)
            {
                ThreadTree<string> node = new ThreadTree<string>();

                Console.WriteLine("请输入要插入节点的数据:\n");

                node.data = Console.ReadLine();

                Console.WriteLine("请输入要查找的父节点数据:\n");

                var parentData = Console.ReadLine();

                if (tree == null)
                {
                    Console.WriteLine("未找到您输入的父节点,请重新输入。");
                    continue;
                }

                Console.WriteLine("请确定要插入到父节点的:1 左侧,2 右侧");

                Direction direction = (Direction)Enum.Parse(typeof(Direction), Console.ReadLine());

                tree = mananger.BinTreeThreadAddNode(tree, node, parentData, direction);

                Console.WriteLine("插入成功,是否继续?  1 继续, 2 退出");

                if (int.Parse(Console.ReadLine()) == 1)
                    continue;
                else
                    break;
            }

            return tree;
        }
        #endregion
    }

    #region 节点标识(用于判断孩子是节点还是线索)
    /// <summary>
/// 节点标识(用于判断孩子是节点还是线索)
/// </summary>
    public enum NodeFlag
    {
        SubTree = 1,
        Thread = 2
    }
    #endregion

    #region 线索二叉树的结构
    /// <summary>
/// 线索二叉树的结构
/// </summary>
/// <typeparam name="T"></typeparam>
    public class ThreadTree<T>
    {
        public T data;
        public ThreadTree<T> left;
        public ThreadTree<T> right;
        public NodeFlag leftFlag;
        public NodeFlag rightFlag;
    }
    #endregion

    #region 插入左节点或者右节点
    /// <summary>
/// 插入左节点或者右节点
/// </summary>
    public enum Direction { Left = 1, Right = 2 }
    #endregion

    #region 线索二叉树的基本操作
    /// <summary>
/// 线索二叉树的基本操作
/// </summary>
    public class ThreadTreeManager
    {
        #region 将指定节点插入到二叉树中
        /// <summary>
/// 将指定节点插入到二叉树中
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
/// <param name="node"></param>
/// <param name="direction">插入做左是右</param>
/// <returns></returns>
        public ThreadTree<T> BinTreeThreadAddNode<T>(ThreadTree<T> tree, ThreadTree<T> node, T data, Direction direction)
        {
            if (tree == null)
                return null;

            if (tree.data.Equals(data))
            {
                switch (direction)
                {
                    case Direction.Left:
                        if (tree.left != null)
                            throw new Exception("树的左节点不为空,不能插入");
                        else
                            tree.left = node;

                        break;
                    case Direction.Right:
                        if (tree.right != null)
                            throw new Exception("树的右节点不为空,不能插入");
                        else
                            tree.right = node;

                        break;
                }
            }

            BinTreeThreadAddNode(tree.left, node, data, direction);
            BinTreeThreadAddNode(tree.right, node, data, direction);

            return tree;
        }
        #endregion

        #region 中序遍历构建线索二叉树
        /// <summary>
/// 中序遍历构建线索二叉树
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
        public void BinTreeThreadingCreate_LDR<T>(ref ThreadTree<T> tree, ref ThreadTree<T> prevNode)
        {
            if (tree == null)
                return;

            //先左子树遍历,寻找起始点
            BinTreeThreadingCreate_LDR(ref tree.left, ref prevNode);

            //如果left为空,则说明该节点可以放“线索”
            tree.leftFlag = (tree.left == null) ? NodeFlag.Thread : NodeFlag.SubTree;

            //如果right为空,则说明该节点可以放“线索”
            tree.rightFlag = (tree.right == null) ? NodeFlag.Thread : NodeFlag.SubTree;

            if (prevNode != null)
            {
                if (tree.leftFlag == NodeFlag.Thread)
                    tree.left = prevNode;
                if (prevNode.rightFlag == NodeFlag.Thread)
                    prevNode.right = tree;
            }

            //保存前驱节点
            prevNode = tree;

            BinTreeThreadingCreate_LDR(ref tree.right, ref prevNode);
        }
        #endregion

        #region 查找指定节点的后继
        /// <summary>
/// 查找指定节点的后继
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
        public ThreadTree<T> BinTreeThreadNext_LDR<T>(ThreadTree<T> tree)
        {
            if (tree == null)
                return null;

            //如果查找节点的标志域中是Thread,则直接获取
            if (tree.rightFlag == NodeFlag.Thread)
                return tree.right;
            else
            {
                //根据中序遍历的规则是寻找右子树中中序遍历的第一个节点
                var rightNode = tree.right;

                //如果该节点是subTree就需要循环遍历
                while (rightNode.leftFlag == NodeFlag.SubTree)
                {
                    rightNode = rightNode.left;
                }
                return rightNode;
            }
        }
        #endregion

        #region 查找指定节点的前驱
        /// <summary>
/// 查找指定节点的前驱
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
/// <returns></returns>
        public ThreadTree<T> BinTreeThreadPrev_LDR<T>(ThreadTree<T> tree)
        {
            if (tree == null)
                return null;

            //如果标志域中存放的是线索,那么可以直接找出来
            if (tree.leftFlag == NodeFlag.Thread)
                return tree.left;
            else
            {
                //根据”中序“的规则可知,如果不为Thread,则要找出左子树的最后节点
//也就是左子树中最后输出的元素
                var leftNode = tree.left;

                while (leftNode.rightFlag == NodeFlag.SubTree)
                    leftNode = leftNode.right;

                return leftNode;
            }
        }
        #endregion

        #region 遍历线索二叉树
        /// <summary>
/// 遍历线索二叉树
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="tree"></param>
        public void BinTreeThread_LDR<T>(ThreadTree<T> tree)
        {
            if (tree == null)
                return;

            while (tree.leftFlag == NodeFlag.SubTree)
                tree = tree.left;

            do
            {
                Console.Write(tree.data + "\t");

                tree = BinTreeThreadNext_LDR(tree);

            } while (tree != null);

        }
        #endregion
    }
    #endregion
}

将文章开头处的数据输入到存储结构中

算法系列15天速成 第十二天 树操作【中】

标签:
树操作

明霞山资源网 Design By www.htccd.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
明霞山资源网 Design By www.htccd.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。