明霞山资源网 Design By www.htccd.com
代码位于keras的官方样例,并做了微量修改和大量学习"" src="/UploadFiles/2021-04-08/20200612141852.jpg">
import keras import numpy as np import matplotlib.pyplot as plt import random from keras.callbacks import TensorBoard from keras.datasets import mnist from keras.models import Model from keras.layers import Input, Flatten, Dense, Dropout, Lambda from keras.optimizers import RMSprop from keras import backend as K num_classes = 10 epochs = 20 def euclidean_distance(vects): x, y = vects sum_square = K.sum(K.square(x - y), axis=1, keepdims=True) return K.sqrt(K.maximum(sum_square, K.epsilon())) def eucl_dist_output_shape(shapes): shape1, shape2 = shapes return (shape1[0], 1) def contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' margin = 1 sqaure_pred = K.square(y_pred) margin_square = K.square(K.maximum(margin - y_pred, 0)) return K.mean(y_true * sqaure_pred + (1 - y_true) * margin_square) def create_pairs(x, digit_indices): '''Positive and negative pair creation. Alternates between positive and negative pairs. ''' pairs = [] labels = [] n = min([len(digit_indices[d]) for d in range(num_classes)]) - 1 for d in range(num_classes): for i in range(n): z1, z2 = digit_indices[d][i], digit_indices[d][i + 1] pairs += [[x[z1], x[z2]]] inc = random.randrange(1, num_classes) dn = (d + inc) % num_classes z1, z2 = digit_indices[d][i], digit_indices[dn][i] pairs += [[x[z1], x[z2]]] labels += [1, 0] return np.array(pairs), np.array(labels) def create_base_network(input_shape): '''Base network to be shared (eq. to feature extraction). ''' input = Input(shape=input_shape) x = Flatten()(input) x = Dense(128, activation='relu')(x) x = Dropout(0.1)(x) x = Dense(128, activation='relu')(x) x = Dropout(0.1)(x) x = Dense(128, activation='relu')(x) return Model(input, x) def compute_accuracy(y_true, y_pred): # numpy上的操作 '''Compute classification accuracy with a fixed threshold on distances. ''' pred = y_pred.ravel() < 0.5 return np.mean(pred == y_true) def accuracy(y_true, y_pred): # Tensor上的操作 '''Compute classification accuracy with a fixed threshold on distances. ''' return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype))) def plot_train_history(history, train_metrics, val_metrics): plt.plot(history.history.get(train_metrics), '-o') plt.plot(history.history.get(val_metrics), '-o') plt.ylabel(train_metrics) plt.xlabel('Epochs') plt.legend(['train', 'validation']) # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 input_shape = x_train.shape[1:] # create training+test positive and negative pairs digit_indices = [np.where(y_train == i)[0] for i in range(num_classes)] tr_pairs, tr_y = create_pairs(x_train, digit_indices) digit_indices = [np.where(y_test == i)[0] for i in range(num_classes)] te_pairs, te_y = create_pairs(x_test, digit_indices) # network definition base_network = create_base_network(input_shape) input_a = Input(shape=input_shape) input_b = Input(shape=input_shape) # because we re-use the same instance `base_network`, # the weights of the network # will be shared across the two branches processed_a = base_network(input_a) processed_b = base_network(input_b) distance = Lambda(euclidean_distance, output_shape=eucl_dist_output_shape)([processed_a, processed_b]) model = Model([input_a, input_b], distance) keras.utils.plot_model(model,"siamModel.png",show_shapes=True) model.summary() # train rms = RMSprop() model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy]) history=model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, batch_size=128, epochs=epochs,verbose=2, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)) plt.figure(figsize=(8, 4)) plt.subplot(1, 2, 1) plot_train_history(history, 'loss', 'val_loss') plt.subplot(1, 2, 2) plot_train_history(history, 'accuracy', 'val_accuracy') plt.show() # compute final accuracy on training and test sets y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) tr_acc = compute_accuracy(tr_y, y_pred) y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) te_acc = compute_accuracy(te_y, y_pred) print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc)) print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
以上这篇keras的siamese(孪生网络)实现案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
明霞山资源网 Design By www.htccd.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
明霞山资源网 Design By www.htccd.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?