前言
之前实践了下face++在线人脸识别版本,这回做一下离线版本。github 上面有关于face_recognition的相关资料,本人只是做个搬运工,对其中的一些内容进行搬运,对其中一些例子进行实现。
官方描述:
face_recognition是一个强大、简单、易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统。本项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取、识别、操作人脸。本项目的人脸识别是基于业内领先的C++开源库 dlib中的深度学习模型,用Labeled Faces in the Wild人脸数据集进行测试,有高达99.38%的准确率。但对小孩和亚洲人脸的识别准确率尚待提升。
(关于兼容树莓派,以后有板子了再做一下)
下面两个链接划重点
https://github.com/ageitgey/face_recognition/blob/master/README_Simplified_Chinese.md
https://face-recognition.readthedocs.io/en/latest/face_recognition.html
环境配置
- ubuntu16.04(其他环境的安装可以参考第一个链接,官方有说明)
- pycharm(可忽略,怎么舒服怎么来)
- python3
- opencv(我的是4.1.2,三点几的版本应该也一样)
实际上只需要安装face_recognition,当然,没有opencv的也需要安装一下opencv
pip3 install face_recognition
图片准备
由于需要做一些图片的比对,因此需要准备一些图片,本文图片取自以下链接
https://www.zhihu.com/question/314169580/answer/872770507
接下来开始操作
官方还有提供命令行的操作(这个没去做),本文不做这个,我们只要是要在python中用face_recognition,因此定位到这一块。
这个api文档地址就是上面的第二个链接。进去之后可以看到:
part1.识别图片中的人是谁
代码
# part1 # 识别图片中的人是谁 import face_recognition known_image = face_recognition.load_image_file("lyf1.jpg") unknown_image = face_recognition.load_image_file("lyf2.jpg") lyf_encoding = face_recognition.face_encodings(known_image)[0] unknown_encoding = face_recognition.face_encodings(unknown_image)[0] results = face_recognition.compare_faces([lyf_encoding], unknown_encoding) # A list of True/False values indicating which known_face_encodings match the face encoding to check print(type(results)) print(results) if results[0] == True: print("yes") else: print("no")
结果
<class 'list'>
[True]
yes
part2.从图片中找到人脸
代码
# part2 # 从图片中找到人脸(定位人脸位置) import face_recognition import cv2 image = face_recognition.load_image_file("lyf1.jpg") face_locations_useCNN = face_recognition.face_locations(image,model='cnn') # model – Which face detection model to use. “hog” is less accurate but faster on CPUs. # “cnn” is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is “hog”. face_locations_noCNN=face_recognition.face_locations(image) # A list of tuples of found face locations in css (top, right, bottom, left) order # 因为返回值的顺序是这样子的,因此在后面的for循环里面赋值要注意按这个顺序来 print("face_location_useCNN:") print(face_locations_useCNN) face_num1=len(face_locations_useCNN) print(face_num1) # The number of faces print("face_location_noCNN:") print(face_locations_noCNN) face_num2=len(face_locations_noCNN) print(face_num2) # The number of faces # 到这里为止,可以观察两种情况的坐标和人脸数,一般来说,坐标会不一样,但是检测出来的人脸数应该是一样的 # 也就是说face_num1 = face_num2; face_locations_useCNN 和 face_locations_noCNN 不一样 org = cv2.imread("lyf1.jpg") img = cv2.imread("lyf1.jpg") cv2.imshow("lyf1.jpg",img) # 原始图片 # Go to get the data and draw the rectangle # use CNN for i in range(0,face_num1): top = face_locations_useCNN[i][0] right = face_locations_useCNN[i][1] bottom = face_locations_useCNN[i][2] left = face_locations_useCNN[i][3] start = (left, top) end = (right, bottom) color = (0,255,255) thickness = 2 cv2.rectangle(img, start, end, color, thickness) # opencv 里面画矩形的函数 # Show the result cv2.imshow("useCNN",img) # for face_location in face_locations_noCNN: # # # Print the location of each face in this image # top, right, bottom, left = face_location # # 等价于下面的这种写法 for i in range(0,face_num2): top = face_locations_noCNN[i][0] right = face_locations_noCNN[i][1] bottom = face_locations_noCNN[i][2] left = face_locations_noCNN[i][3] start = (left, top) end = (right, bottom) color = (0,255,255) thickness = 2 cv2.rectangle(org, start, end, color, thickness) cv2.imshow("no cnn ",org) cv2.waitKey(0) cv2.destroyAllWindows()
结果
face_location_useCNN:
[(223, 470, 427, 266)]
1
face_location_noCNN:
[(242, 489, 464, 266)]
1
图片效果大致是这样
part3.找到人脸并将其裁剪打印出来(使用cnn定位人脸)
代码
# part3 # 找到人脸并将其裁剪打印出来(使用cnn定位人脸) from PIL import Image import face_recognition # Load the jpg file into a numpy array image = face_recognition.load_image_file("lyf1.jpg") face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn") print("I found {} face(s) in this photograph.".format(len(face_locations))) for face_location in face_locations: top, right, bottom, left = face_location print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) face_image = image[top:bottom, left:right] pil_image = Image.fromarray(face_image) pil_image.show()
结果
I found 1 face(s) in this photograph.
A face is located at pixel location Top: 205, Left: 276, Bottom: 440, Right: 512
图片效果大致是这样
part4.识别单张图片中人脸的关键点
代码
# part4 识别单张图片中人脸的关键点 from PIL import Image, ImageDraw import face_recognition # Load the jpg file into a numpy array image = face_recognition.load_image_file("lyf1.jpg") # Find all facial features in all the faces in the image face_landmarks_list = face_recognition.face_landmarks(image) # print(face_landmarks_list) print("I found {} face(s) in this photograph.".format(len(face_landmarks_list))) # Create a PIL imagedraw object so we can draw on the picture pil_image = Image.fromarray(image) d = ImageDraw.Draw(pil_image) for face_landmarks in face_landmarks_list: # Print the location of each facial feature in this image for facial_feature in face_landmarks.keys(): print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature])) # Let's trace out each facial feature in the image with a line! for facial_feature in face_landmarks.keys(): d.line(face_landmarks[facial_feature], width=5) # Show the picture pil_image.show()
结果
I found 1 face(s) in this photograph.
The left_eyebrow in this face has the following points: [(305, 285), (321, 276), (340, 277), (360, 281), (377, 288)]
The right_eye in this face has the following points: [(422, 313), (432, 303), (446, 302), (459, 305), (449, 312), (435, 314)]
The nose_bridge in this face has the following points: [(394, 309), (394, 331), (395, 354), (396, 375)]
The right_eyebrow in this face has the following points: [(407, 287), (424, 278), (442, 273), (461, 272), (478, 279)]
The bottom_lip in this face has the following points: [(429, 409), (419, 421), (408, 428), (398, 430), (389, 429), (377, 424), (364, 412), (370, 413), (389, 414), (398, 415), (407, 413), (423, 411)]
The chin in this face has the following points: [(289, 295), (291, 323), (296, 351), (303, 378), (315, 403), (332, 428), (353, 448), (376, 464), (400, 467), (422, 461), (441, 444), (459, 425), (473, 403), (484, 377), (490, 351), (493, 323), (493, 296)]
The top_lip in this face has the following points: [(364, 412), (377, 407), (389, 403), (397, 406), (406, 402), (417, 405), (429, 409), (423, 411), (406, 412), (397, 414), (389, 413), (370, 413)]
The left_eye in this face has the following points: [(327, 308), (339, 304), (353, 306), (364, 314), (352, 317), (338, 316)]
The nose_tip in this face has the following points: [(375, 383), (386, 387), (396, 390), (407, 385), (416, 381)]
图片效果
Python3,人脸识别
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。