明霞山资源网 Design By www.htccd.com
均方损失函数:
这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标。
很多的 loss 函数都有 size_average 和 reduce 两个布尔类型的参数。因为一般损失函数都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 (batch_size, ) 的向量。
(1)如果 reduce = False,那么 size_average 参数失效,直接返回向量形式的 loss
(2)如果 reduce = True,那么 loss 返回的是标量
a)如果 size_average = True,返回 loss.mean(); b)如果 size_average = False,返回 loss.sum();
注意:默认情况下, reduce = True,size_average = True
import torch import numpy as np
1、返回向量
loss_fn = torch.nn.MSELoss(reduce=False, size_average=False)
a=np.array([[1,2],[3,4]]) b=np.array([[2,3],[4,5]])
input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b))
这里将Variable类型统一为float()(tensor类型也是调用xxx.float())
loss = loss_fn(input.float(), target.float())
print(loss)
tensor([[ 1., 1.], [ 1., 1.]])
2、返回平均值
a=np.array([[1,2],[3,4]]) b=np.array([[2,3],[4,4]])
loss_fn = torch.nn.MSELoss(reduce=True, size_average=True)
input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)
tensor(0.7500)
以上这篇pytorch 实现cross entropy损失函数计算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
明霞山资源网 Design By www.htccd.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
明霞山资源网 Design By www.htccd.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?