1.损失函数
损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一。另一个必不可少的要素是优化器。
损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等。
损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较)。
损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数。
我们先定义两个二维数组,然后用不同的损失函数计算其损失值。
import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F sample = Variable(torch.ones(2,2)) a=torch.Tensor(2,2) a[0,0]=0 a[0,1]=1 a[1,0]=2 a[1,1]=3 target = Variable (a)
sample 的值为:[[1,1],[1,1]]。
target 的值为:[[0,1],[2,3]]。
1 nn.L1Loss
L1Loss 计算方法很简单,取预测值和真实值的绝对误差的平均数即可。
criterion = nn.L1Loss() loss = criterion(sample, target) print(loss)
最后结果是:1。
它的计算逻辑是这样的:
先计算绝对差总和:|0-1|+|1-1|+|2-1|+|3-1|=4;
然后再平均:4/4=1。
2 nn.SmoothL1Loss
SmoothL1Loss 也叫作 Huber Loss,误差在 (-1,1) 上是平方损失,其他情况是 L1 损失。
criterion = nn.SmoothL1Loss() loss = criterion(sample, target) print(loss)
最后结果是:0.625。
3 nn.MSELoss
平方损失函数。其计算公式是预测值和真实值之间的平方和的平均数。
criterion = nn.MSELoss() loss = criterion(sample, target) print(loss)
最后结果是:1.5。
4 nn.CrossEntropyLoss
交叉熵损失函数
花了点时间才能看懂它。
首先,先看几个例子,
需要注意的是,target输入必须是 tensor long 类型(int64位)
import torch # cross entropy loss pred = np.array([[0.8, 2.0, 1.2]]) CELoss = torch.nn.CrossEntropyLoss() for k in range(3): target = np.array([k]) loss2 = CELoss(torch.from_numpy(pred), torch.from_numpy(target).long()) print(loss2)
Output:
tensor(1.7599, dtype=torch.float64) tensor(0.5599, dtype=torch.float64) tensor(1.3599, dtype=torch.float64)
如果,改成pred = np.array([[0.8, 2.0, 2.0]]),输出,
tensor(2.0334, dtype=torch.float64) tensor(0.8334, dtype=torch.float64) tensor(0.8334, dtype=torch.float64)
后面两个输出一样。
先看它的公式,就明白怎么回事了:
(这个应该是有两个标准交叉熵组成了,后面一个算是预测错误的交叉熵?反正,数值会变大了)
使用 numpy来实现是这样的:
pred = np.array([[0.8, 2.0, 2.0]]) nClass = pred.shape[1] target = np.array([0]) def labelEncoder(y): tmp = np.zeros(shape = (y.shape[0], nClass)) for i in range(y.shape[0]): tmp[i][y[i]] = 1 return tmp def crossEntropy(pred, target): target = labelEncoder(target) pred = softmax(pred) H = -np.sum(target*np.log(pred)) return H H = crossEntropy(pred, target)
输出:
2.0334282107562287
对上了!
再回头看看,公式
这里,就是class 就是索引,(调用 nn.CrossEntropyLoss需要注意),这里把Softmax求p 和 ylog(p)写在一起,一开始还没反应过来。
5.nn.BCELoss
二分类交叉熵的含义其实在交叉熵上面提过,就是把{y, 1-y}当做两项分布,计算出来的loss就比交叉熵大(也就是包含的信息更多了,因为包含了正类和负类的loss了)。
最后结果是:-13.8155。
6 nn.NLLLoss
负对数似然损失函数(Negative Log Likelihood)
在前面接上一个 LogSoftMax 层就等价于交叉熵损失了。注意这里的 xlabel 和上个交叉熵损失里的不一样,这里是经过 log 运算后的数值。这个损失函数一般也是用在图像识别模型上。
NLLLoss 的 输入 是一个对数概率向量和一个目标标签(不需要是one-hot编码形式的). 它不会为我们计算对数概率. 适合网络的最后一层是log_softmax. 损失函数 nn.CrossEntropyLoss() 与 NLLLoss() 相同, 唯一的不同是它为我们去做 softmax.
Nn.NLLLoss 和 nn.CrossEntropyLoss 的功能是非常相似的!通常都是用在多分类模型中,实际应用中我们一般用 NLLLoss 比较多。
7 nn.NLLLoss2d
和上面类似,但是多了几个维度,一般用在图片上。
input, (N, C, H, W)
target, (N, H, W)
比如用全卷积网络做分类时,最后图片的每个点都会预测一个类别标签。
criterion = nn.NLLLoss2d() loss = criterion(sample, target) print(loss)
最后结果是:报错,看来不能直接这么用!
8 .BCEWithLogitsLoss 与 MultilabelSoftMarginLoss
BCEWithLogitsLoss :
这里,主要x,y的顺序,x为predict的输出(还没有sigmoid);y为真实标签,一般是[0,1],但是真实标签也可以是概率表示,如[0.1, 0.9].
可以看出,这里与 BCELoss相比,它帮你做sigmoid 操作,不需要你输出时加激活函数。
MultiLabelSoftMarginLoss :
可以看出, 后者是前者权值为1时的特例。
import torch from torch.autograd import Variable from torch import nn x = Variable(torch.randn(10, 3)) y = Variable(torch.FloatTensor(10, 3).random_(2)) # double the loss for class 1 class_weight = torch.FloatTensor([1.0, 2.0, 1.0]) # double the loss for last sample element_weight = torch.FloatTensor([1.0]*9 + [2.0]).view(-1, 1) element_weight = element_weight.repeat(1, 3) bce_criterion = nn.BCEWithLogitsLoss(weight=None, reduce=False) multi_criterion = nn.MultiLabelSoftMarginLoss(weight=None, reduce=False) bce_criterion_class = nn.BCEWithLogitsLoss(weight=class_weight, reduce=False) multi_criterion_class = nn.MultiLabelSoftMarginLoss(weight=class_weight, reduce=False) bce_criterion_element = nn.BCEWithLogitsLoss(weight=element_weight, reduce=False) multi_criterion_element = nn.MultiLabelSoftMarginLoss(weight=element_weight, reduce=False) bce_loss = bce_criterion(x, y) multi_loss = multi_criterion(x, y) bce_loss_class = bce_criterion_class(x, y) multi_loss_class = multi_criterion_class(x, y) print(bce_loss_class) print(multi_loss_class) print('bce_loss',bce_loss) print('bce loss mean', torch.mean(bce_loss, dim = 1)) print('multi_loss', multi_loss)
9.比较BCEWithLogitsLoss和TensorFlow的 sigmoid_cross_entropy_with_logits;softmax_cross_entropy_with_logits
pytorch BCEwithLogitsLoss 参考前面8的介绍。
from torch import nn from torch.autograd import Variable bce_criterion = nn.BCEWithLogitsLoss(weight = None, reduce = False) y = Variable(torch.tensor([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]],dtype=torch.float64)) logits = Variable(torch.tensor([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]],dtype=torch.float64)) bce_criterion(logits, y)
result:
tensor([[6.1442e-06, 3.0486e+00, 2.1269e+00], [3.0486e+00, 4.5399e-05, 1.3133e+00], [1.3133e+00, 2.1269e+00, 6.7153e-03], [1.8150e-02, 1.5023e-03, 1.4633e+00], [3.0486e+00, 2.4757e-03, 1.3133e+00]], dtype=torch.float64)
如果使用 TensorFlow的sigmoid_cross_entropy_with_logits,
y = np.array([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]]) logits = np.array([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]]).astype(np.float32) sess =tf.Session() y = np.array(y).astype(np.float32) # labels是float64的数据类型 E2 = sess.run(tf.nn.sigmoid_cross_entropy_with_logits(labels=y,logits=logits)) print(E2)
result
[[6.1441933e-06 3.0485873e+00 2.1269281e+00] [3.0485873e+00 4.5398901e-05 1.3132617e+00] [1.3132617e+00 2.1269281e+00 6.7153485e-03] [1.8149929e-02 1.5023102e-03 1.4632825e+00] [3.0485873e+00 2.4756852e-03 1.3132617e+00]]
从结果来看,两个是等价的。
其实,两个损失函数都是,先预测结果sigmoid,再求交叉熵。
Keras binary_crossentropy 也是调用 Tf sigmoid_cross_entropy_with_logits.
keras binary_crossentropy 源码;
def loss_fn(y_true, y_pred, e=0.1): bce_loss = K.binary_crossentropy(y_true, y_pred) return K.mean(bce_loss, axis = -1) y = K.variable([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]]) logits = K.variable([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]]) res = loss_fn(logits, y) print(K.get_value(res)) from keras.losses import binary_crossentropy print(K.get_value(binary_crossentropy(logits, y)))
result:
[-31.59192 -26.336359 -5.1384177 -38.72286 -5.0798492] [-31.59192 -26.336359 -5.1384177 -38.72286 -5.0798492]
同样,如果是softmax_cross_entropy_with_logits的话,
y = np.array([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]]) logits = np.array([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]]).astype(np.float32) sess =tf.Session() y = np.array(y).astype(np.float32) # labels是float64的数据类型 E2 = sess.run(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits)) print(E2)
result:
[1.6878611e-04 1.0346780e-03 6.5883912e-02 2.6669841e+00 5.4985214e-02]
发现维度都已经变了,这个是 N*1维了。
即使,把上面sigmoid_cross_entropy_with_logits的结果维度改变,也是 [1.725174 1.4539648 1.1489683 0.49431157 1.4547749 ],两者还是不一样。
关于选用softmax_cross_entropy_with_logits还是sigmoid_cross_entropy_with_logits,使用softmax,精度会更好,数值稳定性更好,同时,会依赖超参数。
2 其他不常用loss
以上这篇Pytorch 的损失函数Loss function使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?