明霞山资源网 Design By www.htccd.com

先粘贴一段official guide:nn.conv1d官方

pytorch中nn.Conv1d的用法详解

我一开始被in_channels、out_channels卡住了很久,结果发现就和conv2d是一毛一样的。话不多说,先粘代码(菜鸡的自我修养)

class CNN1d(nn.Module):

  def __init__(self):
    super(CNN1d,self).__init__()
    self.layer1 = nn.Sequential(
          nn.Conv1d(1,100,2),
          nn.BatchNorm1d(100),
          nn.ReLU(),
          nn.MaxPool1d(8))
    self.layer2 = nn.Sequential(
          nn.Conv1d(100,50,2),
          nn.BatchNorm1d(50),
          nn.ReLU(),
          nn.MaxPool1d(8))
    self.fc = nn.Linear(300,6)
  def forward(self,x):
    #input.shape:(16,1,425)
    out = self.layer1(x)
    out = out.view(out.size(0),-1)
    out = self.fc(out)
    return out

输入的数据格式是(batch_size,word_vector,sequence_length),我设置的batch=16,特征工程样本是1x425,套用该格式就应该是(16,1,425)。对应nn.Conv1d的in_channels=1,out_channels就是你自己设置的,我选择的是100。

因为我做的是分类场景,所以做完两次一维卷积后还要加上一个线性层。

以上这篇pytorch中nn.Conv1d的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,nn.Conv1d

明霞山资源网 Design By www.htccd.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
明霞山资源网 Design By www.htccd.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。