明霞山资源网 Design By www.htccd.com

本文信息基于PG13.1。

从PG9.6开始支持并行查询。PG11开始支持CREATE TABLE … AS、SELECT INTO以及CREATE MATERIALIZED VIEW的并行查询。

先说结论:

换用create table as 或者select into或者导入导出。

首先跟踪如下查询语句的执行计划:

select count(*) from test t1,test1 t2 where t1.id = t2.id ;
postgres=# explain analyze select count(*) from test t1,test1 t2 where t1.id = t2.id ;
                                    QUERY PLAN                                    
--------------------------------------------------------------------------------------------------------------------------------------------------------
 Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=683.246..715.324 rows=1 loops=1)
  -> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=681.474..715.311 rows=3 loops=1)
     Workers Planned: 2
     Workers Launched: 2
     -> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=674.689..675.285 rows=1 loops=3)
        -> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=447.799..645.689 rows=333333 loops=3)
           Hash Cond: (t1.id = t2.id)
           -> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.025..74.010 rows=333333 loops=3)
           -> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=260.052..260.053 rows=333333 loops=3)
              Buckets: 131072 Batches: 16 Memory Usage: 3520kB
              -> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.032..104.804 rows=333333 loops=3)
 Planning Time: 0.420 ms
 Execution Time: 715.447 ms
(13 rows)

可以看到走了两个Workers。

下边看一下insert into select:

postgres=# explain analyze insert into va select count(*) from test t1,test1 t2 where t1.id = t2.id ;     
                                  QUERY PLAN                                  
--------------------------------------------------------------------------------------------------------------------------------------------------
 Insert on va (cost=73228.00..73228.02 rows=1 width=4) (actual time=3744.179..3744.187 rows=0 loops=1)
  -> Subquery Scan on "*SELECT*" (cost=73228.00..73228.02 rows=1 width=4) (actual time=3743.343..3743.352 rows=1 loops=1)
     -> Aggregate (cost=73228.00..73228.01 rows=1 width=8) (actual time=3743.247..3743.254 rows=1 loops=1)
        -> Hash Join (cost=30832.00..70728.00 rows=1000000 width=0) (actual time=1092.295..3511.301 rows=1000000 loops=1)
           Hash Cond: (t1.id = t2.id)
           -> Seq Scan on test t1 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.030..421.537 rows=1000000 loops=1)
           -> Hash (cost=14425.00..14425.00 rows=1000000 width=4) (actual time=1090.078..1090.081 rows=1000000 loops=1)
              Buckets: 131072 Batches: 16 Memory Usage: 3227kB
              -> Seq Scan on test1 t2 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.021..422.768 rows=1000000 loops=1)
 Planning Time: 0.511 ms
 Execution Time: 3745.633 ms
(11 rows)

可以看到并没有Workers的指示,没有启用并行查询。

即使开启强制并行,也无法走并行查询。

postgres=# set force_parallel_mode =on;
SET
postgres=# explain analyze insert into va select count(*) from test t1,test1 t2 where t1.id = t2.id ;
                                  QUERY PLAN                                  
--------------------------------------------------------------------------------------------------------------------------------------------------
 Insert on va (cost=73228.00..73228.02 rows=1 width=4) (actual time=3825.042..3825.049 rows=0 loops=1)
  -> Subquery Scan on "*SELECT*" (cost=73228.00..73228.02 rows=1 width=4) (actual time=3824.976..3824.984 rows=1 loops=1)
     -> Aggregate (cost=73228.00..73228.01 rows=1 width=8) (actual time=3824.972..3824.978 rows=1 loops=1)
        -> Hash Join (cost=30832.00..70728.00 rows=1000000 width=0) (actual time=1073.587..3599.402 rows=1000000 loops=1)
           Hash Cond: (t1.id = t2.id)
           -> Seq Scan on test t1 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.034..414.965 rows=1000000 loops=1)
           -> Hash (cost=14425.00..14425.00 rows=1000000 width=4) (actual time=1072.441..1072.443 rows=1000000 loops=1)
              Buckets: 131072 Batches: 16 Memory Usage: 3227kB
              -> Seq Scan on test1 t2 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.022..400.624 rows=1000000 loops=1)
 Planning Time: 0.577 ms
 Execution Time: 3825.923 ms
(11 rows)

原因在官方文档有写:

The query writes any data or locks any database rows. If a query contains a data-modifying operation either at the top level or within a CTE, no parallel plans for that query will be generated. As an exception, the commands CREATE TABLE … AS, SELECT INTO, and CREATE MATERIALIZED VIEW which create a new table and populate it can use a parallel plan.

解决方案有如下三种:

1.select into

postgres=# explain analyze select count(*) into vaa from test t1,test1 t2 where t1.id = t2.id ;
                                    QUERY PLAN                                    
--------------------------------------------------------------------------------------------------------------------------------------------------------
 Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=742.736..774.923 rows=1 loops=1)
  -> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=740.223..774.907 rows=3 loops=1)
     Workers Planned: 2
     Workers Launched: 2
     -> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=731.408..731.413 rows=1 loops=3)
        -> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=489.880..700.830 rows=333333 loops=3)
           Hash Cond: (t1.id = t2.id)
           -> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.033..87.479 rows=333333 loops=3)
           -> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=266.839..266.840 rows=333333 loops=3)
              Buckets: 131072 Batches: 16 Memory Usage: 3520kB
              -> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.058..106.874 rows=333333 loops=3)
 Planning Time: 0.319 ms
 Execution Time: 783.300 ms
(13 rows)

2.create table as

postgres=# explain analyze create table vb as select count(*) from test t1,test1 t2 where t1.id = t2.id ;
                                   QUERY PLAN                                    
-------------------------------------------------------------------------------------------------------------------------------------------------------
 Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=540.120..563.733 rows=1 loops=1)
  -> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=537.982..563.720 rows=3 loops=1)
     Workers Planned: 2
     Workers Launched: 2
     -> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=526.602..527.136 rows=1 loops=3)
        -> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=334.532..502.793 rows=333333 loops=3)
           Hash Cond: (t1.id = t2.id)
           -> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.018..57.819 rows=333333 loops=3)
           -> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=189.502..189.503 rows=333333 loops=3)
              Buckets: 131072 Batches: 16 Memory Usage: 3520kB
              -> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.023..77.786 rows=333333 loops=3)
 Planning Time: 0.189 ms
 Execution Time: 565.448 ms
(13 rows)

3.或者通过导入导出的方式,例如:

psql -h localhost -d postgres -U postgres -c "select count(*) from test t1,test1 t2 where t1.id = t2.id " -o result.csv -A -t -F ","
psql -h localhost -d postgres -U postgres -c "COPY va FROM 'result.csv' WITH (FORMAT CSV, DELIMITER ',', HEADER FALSE, ENCODING 'windows-1252')"

一些场景下也会比非并行快。

标签:
postgresql,并行查询,postgresql,insert,into,select

明霞山资源网 Design By www.htccd.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
明霞山资源网 Design By www.htccd.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。